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Stokes flow in wedge-shaped trenches
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In this paper we develop a separation of variables theory for solving problems of
Stokes flow in wedge-shaped trenches bounded by radial lines and concentric circles
centred at the vertex of the wedge. The theory leads to a set of Stokes flow eigen-
functions which in the full wedge reduce to the corner eigenfunctions studied by Dean
& Montagnon (1949) and Moffatt (1964). Asymptotic formulae for the distribution of
eigenvalues are derived, an adjoint system is defined and is used to develop an algorithm
for the computation of the coefficients in an eigenfunction expansion of edge data
prescribed on the circular boundaries. To illustrate the algorithm we find the motion
and the shape of the free surface in a wedge-shaped cavity heated from its side.

1. Introduction

The aim of this paper is to contribute to a ‘separation of variables’ theory for Stokes
flows in cavities of simple configuration. Generality in a ‘separation of variables’
theory is associated with the applicability of the techniques to many problems in
many domains of simple shape. We claim this kind of generality for the theory given
here. The techniques developed here owe much to the excellent ideas which R. C. T.
Smith (1952) introduced in his study of stresses in a semi-infinite strip clamped at its
side and loaded at its top edge. Smith’s ideas were used by Joseph & Fosdick (1973)
to study a narrow-gap approximation for secondary motions generated in the problem
of the free surface on a liquid between cylinders rotating at different speeds. A more
complete analysis, including numerical analysis, of the problem of Stokes flow in
rectangular trenches was given by Joseph & Sturges (1975) in their study of the free
surface on a liquid filling a rectangular trench heated from its side. In that paper it is
shown that Smith’s biorthogonal series are formally analogous to complex Fourier
series and, though the biorthogonal eigenfunctions are much more complicated than
circular functions, the ‘Fourier coefficients’ may be computed by simple algorithms.
Joseph & Sturges (1975) also showed how the eigenfunction expansions should be used
to compute solutions when the rectangular strip is not semi-infinite but, instead, has
a solid bettom.

Smith (1952) also established conditions on the edge data sufficient to guarantee
the convergence of the biorthogonal series. But Smith’s conditions are too restrictive
for applications. Joseph (1977) and Joseph & Sturges (1977) showed that much less
restrictive conditions suffice to guarantee convergence. The biorthogonal series will
converge in almost every conceivable application. The rate of convergence depends
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on the functions which are to be expanded. As with elementary Fourier series, con-
vergence to ‘load’ functions, like step functions and ramp functions, is conditional
and leads to Gibbs’ phenomena.

The same types of biorthogonal expansions were used by Joseph (1974) in a study
of the free surface on the round edge of a flowing liquid filling a torsion flow viscometer.
This is the first case where this type of eigenfunction expansion arises for a Stokes flow
problem which is not biharmonic. Similar eigenfunction expansions are required for the
axisymmetric problems of Stokes flow between concentric cylinders studied by Yoo
& Joseph (1977) and for the problem of axisymmetric flow in a cone studied by Liu &
Joseph (1977). The study of the free surface on a viscoelastic fluid between oscillating
planes (Sturges & Joseph 1977) also falls within the domain of application of the
biorthogonal series. This problem may be reduced to the study of V4 4+ A2V2)r = 0
(A% is complex) where i and the normal derivative of ¢ vanish on the side-walls.

The list of problems given in the last paragraph is a small sample of those which
can be solved by biorthogonal eigenfunction expansions. The eigenfunctions required
in these different problems depend on the given data and on the domain of flow;
though the data and domains of flow differ from problem to problem, the expansions
for different problems share common properties which appear to be intrinsic to Stokes
flow in cavities.

In this paper we shall show how the corner eigenfunctions of Dean & Montagnon
(1949) and Moffatt (1964) may be used to generate biorthogonal series solutions of
Stokes flow problems in a wedge. The method is illustrated in the course of the solution
which is developed for the title problem. In this example of a Stokes flow a motion is
generated by buoyancy which is induced by density differences associated with
heating one side-wall.

It is perhaps of interest that our work does not fully support the widely accepted
view of Stokes flow in corners. We think that slow flow in a corner is determined by
global considerations arising out of analysis of the entire field of flow and that there
need not be eddies in corners. In our problem, the flow wedge eigenfunctions are
required to turn the flow around at the free surface. No corner eddies enter the solution
even though ‘corner’ eigenfunctions do (see figures 3, 7 and 8).

2. Mathematical formulation
The free-surface problem to be studied in the next sections is sketched in figure 1.
Motion of the liquid is induced in the wedge by the driving action of density variations
induced by temperature gradients. The motion is governed by the Oberbeck—-Bous-
sinesq equations in ¥,
divu =0, u=eu+eu,

kV2T —u. VT =0, (2.1q)
#V?u + (ey8in 0 — e, cos 8) pga(T —Tp) ~pu. Vu -V = 0,

® =p—p,+pgrcost; (2.1b)
by the boundary conditions on the rigid walls,
u(r, +f) = ula,0) = 0T(a,0)/or = 0, (2.2a)

T(r, £ ) =Ty + 3e; (2.2b)
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r=R(0F,¢)
(free surface)

ro="b (frec surfuces)

(h)

Fiaure 1. Fluid fills the sectorial region
YV, = (r,0:a<r<RB;e),-<0<p).

The temperature differenice between the side-walls is ¢. The top and bottom boundaries are

insulated. The configuration of ¥, shown in (a) is mapped in the reference configuration ¥, of the

rest state (R(f; 0) = b, see (b)) by the scaling transformation:

ro—a ro—b

=R -

0 = b,.

The problem is solved in ¥ §.
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by free-surface conditions that the free surface r = R(6;¢) is insulated, the normal
component of velocity and the shear stress vanish and that the jump in the normal
stress is balanced by surface tension,

oT oT
2 R =

R P R 5 0, (2.3a)
Ru,— R'u, = 0, (2.3b)

(P12 %) | (g gy (L0 (Ye) p L) _
RE (5_;—5{9_—7‘)4—(1e ~R )(ZBr(r)+2730)_0’ (2:3c)

ou, _ _ R*+2R"*_RR"
ﬂ—a-r——CD—pchosﬁ—aJ, J = TR (2.3d)
by the requirement that R(0; ¢) satisfy an adherence condition at a sharp edge,

R(xp;¢) =0, (2.40)

or a contact angle condition with horizontal contact,
R'(£f;¢) =0, (2.4b)
and by the requirement that the total volume of fluid is prescribed and equal to

V. = pb*—a?) = } f fﬂ R¥(6; ¢) dO. (2.5)

The constants appearing in the equations are x, thermal diffusivity; u, viscosity;
p,density; g, gravitational constant; «, thermal expansivity ; 7}, reference temperature;
P,, atmospheric pressure; ¢, temperature perturbation; o, surface tension; ¥, volume;
f, semi-vertex angle; b, mean radius of the free surface; a, radius of wedge bottom.

Methods for relaxing condition (2.4b) when the prescribed angle is not flat are given
by Joseph, Beavers & Fosdick (1973). When (2.4b) holds, it is likely that the per-
turbation series converges and is regular in the neighbourhood of the contact line
(Sattinger 1976).

3. The perturbation series

When e = 0, there is no motion, 7'(r, 8) = T}, ® = C| is constant, and
Ci+pgRcost =oJ, ¥y = p(b%—a?), (3.1)

where R satisfies (2.4a) or (2.45). The solution of (3.1) gives the configuration of the
rest state. Our analysis requires that ¥, be a perfect circular sector. The solution of
(3.1) is not a perfect circular sector so long as the ratio § of the mean radius b of the
free surface to the capillary radius § = &/(o"/pg)} + 0. We shall assume that the solution
can be constructed as a double power series in ¢ and 62 When ¢ = § = 0, ¥ is a perfect
circular sector. The free surface is then given by

R(6;¢,82) = b+ ROUs? 4 RO 4 O(8?). (3.2)
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The function f(6) = R®1 is the static correction for small §; that is, when the surface
tension o is large or the product pgb? is small. We find that

f"+f+bcosd =0, fﬂ_ﬂf'dﬁ =0, f{+B)=0, or f(+pf)=0, (3.3)

and f = A cos @ — 30sin § where 4 is to be determined from the boundary conditions.
We are interested in calculating the terms which, like R, are first derivatives of
the solution with respect to ¢ evaluated at (¢, §) = (0, 0). This is equivalent to setting
8 = 0 at the outset; & = 0 has been assumed implicitly in the formulation given in
§2. With 6 = 0 we may define the linear scaling transformation
ro—a  re—0b
= R(6;e) 2>——a-2—.
r (ﬁ,e)b_a ay—
Using (3.4) the deformed domain ¥, is mapped into the reference domain. The solution
of the problem in ¥, may now be obtained as a power series whose coefficients are
evaluated on the reference domain

(3.4)

u(r, 6;¢) ul®(ry, 6,)
T . n [n]
(r’ 0’ 6) — E 6_' T (ro’ 00) (3.5)

O(r,0;¢) n=0N: { OW(r, 6,)

R(0;¢) B™i(6,)

2 dro\"
] — | — 4
where (.) (36+d63r) (.)

and 7(¢) is given by (3.4). The term corresponding to n = 0 is the rest state with
8 =0,T =T, B = p and Q% = — o /b. It follows that

(.)[1] - i) = (_)(1)’

oe
and, at lowest order,
u(r, 8;¢) 0 ulD(rg, 6,)
. (1)
T(r,0;¢) N T, te TW(ry, 6y) (3.6)
O(r,0;¢) —ofb D7, 6,)
R(6;¢) b R (8,)

The first-order temperature correction must satisfy
VITL =0 in ¥,
TN, +8) = + 4, (3.7)
oT W (a, B)[or = oT<V(b, §)[or = 0,
where we have dropped the subscripts on 7, and 8y. Equation (3.7) implies that
<D = 6/28. (3.8)
The velocity field at first order is solenoidal and satisfies

1V2U® + Lpg(e, 0sin 0 — e, 6 cos ) — VOO = 0. (3.9)
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Introducing the stream function y,
w® = 1y W

" o 00’ ory’
we derive, from (3.9), the governing equation

ﬂcosﬁ

Vi = . 3.10)
v 2upf 1o (
The boundary conditions are
Y oy

l//‘(To, iﬂ):‘?e'(ro» iﬂ)=¢-(a’6)='5;(a’6)=0’ (3.11)

and, on the free surface ry = b,

o (1oy

ve.0) =5 (2 0.0) 0. (3.12)

Equations (3.10), (3.11) and (3.12) determine ¥ uniquely.
To reformulate the problem (3.10), (3.11) and (3.12) as an edge problem we introduce
the following change of variables:

t = ryfb,
_ 2B
Wit 6) = — 16f 0,8, (3.13a)
where
f6,8) = 3 ccl)s,b’ [(8+sin S cos B) (cos? O — cos? B) cos Ofsin £ cos® B 4 2(0sin 6 cos
— fsin £ cos 6)]
= K, cos 0+ K,cos*0+0sin b, (3.13d)
—(2fsin? B+ }sin 26+ £)/sin 24
and K, = (f +}sin 24)/sin 24 cos? 6.
We find that
VW =0 in Y(t,0)=[t,0:(afb) <t <1, -f<O<Lp] (3.14a)
Y, £8) = ?(,,\—g(t; ) =0, (3.14b)
¥(1,0) = f(a 8), (3.14¢)
5 (i 3;:"(1 0)) = 3¥(1, 0), (3.14d)
3
¥ (% 0) = 155/ 0, B), (3.14¢)
v

% (5:0) = oar 0.5 (3.147)
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n Complex roots A, (2 = 10°) Complex roots A, (2f = 30°)
1 25:14114414 + 12-86408537% 9-06296527 4 4-20286709:
2 62-38088865 - 17-74998684¢ 21-46721456 4 5-83660112:
3 98-82482881 +20-316817294 33-61272764 + 6-69310333:
4 135-06392018 + 22-080053264 45-69125654 + 7-28117391¢
5 171:21595479 4 23-42596613% 57-74125228 4- 7-729968547
6 207-32213453 4- 24-515058062 69-77619786 4+ 8-093087662
7 243-40094426 + 25-429887244 81-802151504 8-39808581¢
8 279-46200350 + 26-218627404 93-82226927 4+ 8-66103595:
9 315-51084567 4- 26-911869444 105-83836809 4 8-89214245:

10 351-55089380 4 27-53026222¢ 117-83836809 4+ 9-09829226¢

11 387-58438596 + 28:08840449; 129-86261867 + 9-28435393:

12 423-61285082 + 28-59700027¢ 141-87200892 + 9-45389689:

13 459-63737011 4 29-06413212¢ 153-88009929 + 9-609616237

14 495-65873208 + 29-496053052 165-88714920 4+ 9-75359690:

15 531-67752542 + 29-897700257 177-89335246 + 9-88748505¢

16 567-69419915 + 30-27304019¢ 189-89885693 + 10-01260313%

17 603-70910203 + 30-62530754¢ 201-90377748 4 10-130029577

18 639-72250929 + 30-95717482: 213-90820478 + 10-24065539:

19 67573464119 4 31-270875567 225-91221140 4 10-345225202

20 711-74567619 4 31-56829546¢ 237-91585616 + 10-444367667

TABLE 1. Twenty first quadrant roots of (4.4).

4. Eigenfunctions and eigenvalues

We will construct the solution of (3.14) as a ‘Fourier series’ of even ‘ corner eigen-
functions’:

e 3 (6) (4.1)
and t-2nt2¢ (™) (0), (4.2)
where M) = cos(A,—2)fcosA,0—cosA, Bcos(A,—2)60. (4.3)

The functions (4.1) and (4.2) are on the null space of the operator

2 10 1 2\2
4 - -
vi= (6t2+t at+t2602) '

Moreover, PM(£p)=0
and, if sin{28(A,, — 1)]+(A,,—1)sin28 = 0, (4.4)
then H1™(+ ) = 0.

There are an infinite number of first quadrant complex roots A}, Ay, A, ..., of (4.4).
The roots of the equations sin 28(A — 1) + (A — 1) sin 2 = 0 are symmetrically disposed
in the four quarters of the complex 4 = A —1 plane, so that all roots may be obtained
from the first quadrant roots.

The eigenfunctions (4.3) and eigenvalues (4.4) were studied by Dean & Montagnon
(1949) and by Moffatt (1964). Dean & Montagnon (1949) noticed that when 24 is less
than a critical angle 24, say, approximately equal to 146°, equation (4.4) admits no
real solutions (other than the physically irrelevant value x = 0). As 24 increases from
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n Complex roots A, (28 = 60°) Complex roots A, (28 = 90°)
1 5:05932902 + 1-95204995¢ 3:73959336 + 1-11902454¢
2 11-24572709 4 2-77796309¢ 7-84513517 + 1-68163470¢
3 17-31416372 4 3-20778901¢ 11-88555236 + 1-97019950:
4 23-35138167 + 3-50239785¢ 15-90789082 + 2:16733260¢
5 29-37518379 + 3-72707185% 19-92231201 4 2-317464564
6 35-39187214 4+ 3-90878729¢ 23-93248783 + 2-4388044 31
7 41-40429475 +4-06138337¢ 27-94009829 + 2-540657041
8 47-41394127 +4-19292317% 31-94602973 + 2-62843143¢
9 53-42167189 + 4-30852189: 35-95079721 + 2:705554221
10 59-42802037 +4-41163003¢ 39:95472195 + 2-77433459:
11 65:43333653 + 4-504685941¢ 43-95801537 + 2-:83640322:
12 71-43785984 + 4-58947683¢ 4796082267 + 2-89295475:
13 77-44176005 4+ 4:66735185¢ 51-96324707 + 2-944890617
14 83-44516102 +4-73935455¢ 55-96536410 + 2-99290785¢
15 89:44815542 + 4-80630874¢ 59-96723038 + 3:03755659:
16 95-45081400 + 4-86887616¢ 63-96888923 + 3-:07927867¢
17 101-45319176 + 4-92759642; 67-97037437 + 3-118434274
18 107-45533217 + 4-98291529: 71-97171252 4+ 3-15532094:
19 113-45727003 + 5:03520529¢ 75-97292509 + 3-19018729:
20 119-45903358 + 5-:08478091: 79-97402945 + 3-22324318:

TasLE 2. Twenty first quadrant roots of (4.4).

28 to 7, the number of real solutions of (4.4) increases from one to infinity. Moffatt
(1964) interpreted the solutions (4.1), (4.2), (4.3) and (4.4) as a sequence of corner
eddies of decreasing size and rapidly decreasing intensity. Tables 1 and 2 give the first
20 eigenvalues A, for wedge angles 24 of 10°, 30°, 60°, and 90°. The asymptotic
formulae

ReA, ~ 1+ (n—~}a/p, (4.5a)
ImA, ~ %ln [kmr(4n — 1)}, (4.50)

where & = sin 2f/28, approximate the real and imaginary parts of the first quadrant
roots for large n. The formulae (4.5) follow from an elementary asymptotic analysis
using a method introduced by Hardy (1902) and seem not to have been given before.
They give rough approximations for smallz > 1 and quite good approximations when
nis large. We find, as an approximation, that

sin 24 1
28~ m@dn—1)

ImA, >0 when (4.6)

The inequalities of (4.6) hold when f# < f,(n), where

sin2f,(n) 1
2hyn)  man—1)

(4.7)

Clearly, lim B,(n) = m.

n—>o

It follows that for all values of § < 7 there are an infinite number of complex, first
quadrant eigenvalues. Moreover, we have already remarked that Dean & Montagnon
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(1949) have shown that only complex roots and no real roots exist when 24 is greater
than some value near 146°. The value §,(1), given by (4.7),

sin28,(1) 1
26,(1) 3w

is an approximation of this value.

The eigenfunctions (4.3) are even functions of §. We study the even eigenfunctions
because the edge data are even. When the edge data are odd, we could again superpose
eigenfunctions (4.1) and (4.2) with ¢{™ (6) replaced by ¢ (6), where

™(6) = sin (A, — 2) fsinA, 6 —sin A, fsin (A, —2) 6.
The eigenvalue equation for the odd eigenfunction is
sin [28(A, —1)]— (A, —1)sin 28 = 0. (4.8)

It is convenient to number all of the eigenvalues A,, which have posmve real parts.

Hence, we define
_n = Xn, (4.9)

where the overbar designates the complex conjugate. It then follows that

B (0) = 4 (). (4.10)

5. Solution of the edge problem
The solution of (3.14) can be written as

Y = 3 [Cythn+ D,y =242 (0 (6) Ay, —2), (5.1)

where C, = D, = 0 and, since the given edge data are real and A_, = A, and

¢ () = "), C,=0C, and D_, =D,

Equation (5.1) is biharmonic and satisfies the side-wall boundary conditions. We must
show that the coefficients C, and D,, can be selected such that (5.1) satisfies the given
conditions at the bottom ¢ = a/b and at the top ¢ = 1. It is convenient to consider
the special case a = 0 first.

5.1, The full sector (a = 0)

When @ = 0 the velocities corresponding to (5.1) are unbounded as ¢ 0. To obtain
& bounded velocity we set D, = 0 for all n. We next introduce the boundary data

o c_ (FO) _ a(l a\}f/at) / a \
- (50) ‘(azqi,wz )t=1 (%:2)

_ 1 (3f0,8) )
16 \ — K cos0—-3K,cos0(38in20 — 1) +2cosf—0Osinf) "
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The given edge condition (5.2) is compatible with the side-wall boundary conditions
(for a full discussion, see Joseph (1977))

B B
f g(6)do = f 6g(6)d6 = 0. (5.3)
-8 -#
The boundary data (5.2) are now expanded in a series of eigenfunctions
)= S, (00)
= 3C, 5.4
(g 2 g &4
where P = 1 1™, (5.5)

z /\n(/\'n - 2) !

To determine the constants C, we introduce the vectors

(n)
o= (510). @ = g, (5.0
2
The vector ¢ satisfies the differential equation
@™+ A e =0, (5.7
_ 0 -2, (A, —2) )
where An = (,\n(,\n ~2) (A, —2)2+A%)

and the boundary conditions ¢{™(+ ) = ¢|®(+p) = 0. The adjoint vector Y™
satisfies the differential equation

P L™ A =0 (5.8)
and the boundary conditions Y§{?( + 8) = ¥{™(+ ) = 0. We find that
Y = 440,

P = Q’/‘\;z)cosz\nﬂcos(/\n—.‘zw— An cos (A, —2)fcosA, 6,

and i = @—"/\;2—‘— cos (A, —2)BcosA, b— (—/\1\—“—2) cos A, Beos (A, —2)0.
n n

From (5.7) and (5.8) and the boundary conditions we find the following property of
biorthogonality :

8
f—ﬂq’(m).A.cp(”)dﬁ =0 if (A,—1)2=+(A,~1) (5.10)
0 -1
where A= (1 2) .

Using (4.3) and (5.9) we compute
£ BeostA, B Pceos?t(A,—2)8
(n) A ™dl = F =4{ n n
f —ﬂq) ® " A, (A, —2)
_ 2(A,—1)%sin 2fcosA, fcos (A, —2) B
A, —2)F

(A2 —2A, +2)cos A, Beos (A, —2) fsin2(A, — 1) 5
- (1) Ay 2P | @
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6 NG N=1 N=3 N=5 N=9 N =10
0° 0-06267 0-02035 0-05420 0-05949 0-06159 0-06359
3° 0-05769 0-04210 0-05307 0-06074 0-05650 0-05862
6° 0-04404 0-08416 0-04327 0-04143 0-04255 0-04495
9° 0-02543 0-09584 0-01406 0-02705 0-02369 0-02627
12° 0-00799 0-04903 0-02715 0-00834 0-00650 0-00861
12° 0 0 0 0 0 0
6 g9(6) N=1 N=3 N=5 N=9 N=10
0° —1-235 ~1-249 —1-229 —1-232 —1-234 —~1-235
3° —1-081 —~1-098 —1-086 —1-083 —1-080 —1-082
6° —0-626 ~0-634 —0-622 —0-624 —0-624 —0-626
9° 0-1187 0-1458 0-1222 0-1189 0-1205 0-1182
12° 1-1296 1-1740 1-1208 1-1260 1-1330 1-1298
15° 2-3770 2-2343 2-3636 2:3732 2-3760 2.3761

TaBrLE 3. Convergence of the partial sums of the series (5.14) for wedge angle of 30°:

(1) =10 $ 0. ().

N \gP

With these preliminaries aside we may now use the biorthogonality conditions
(5.10) and (5.11) to compute the C,. Recalling that f = X C, ™), we find that

B
I, = f $™ A .fd0 = C, F,. (5.12)
~#
The integral I,, is computed using (5.2) and (5.9). We find that

I, = [P, cos (A, ~2) S+ @, cos A, ], (5.13a)
where

P = (3K1+/\"/\+2 (—K1+6K2+2)) (sin;/\n_——ll)ﬂ_i_sin ()?n_:_ll)ﬂ)
, (A, +2)\ (sin(A,—3)F sin(A,+3)p
+y‘2(1_3 A, )( A, —3 + A, +3
3sin(A,—1)F 3sin(A,+1)p
+ A,—1 + A, +1 )
A, +2) [sin(A,+1)8 Peos(A,+1)8
+(3’ x, )( Mot 1F A+l
sin(A,—1)8 Beos(A,—1)p
M1 A1 )
Qn = (—3K1+i'~/\;(—K1+ 6K2+2)) (Sinf{\":;)ﬂfin f{\"_"llm)
4—2,)\ (sin{A,~—5)p sin(A,+1)f
“%K2(1+3/\n—2)( A —5 X, 41
3sin(A,—3)F 3sin(A,—1)p
t—A 3 Tt a1 )
4—A,)\ (sin(A,—1)B fcos(A,—1)p
"(3+An—2)( MG—1F (-1
sin(A,,—3) 48 ﬂcos(/\n——3)ﬂ)
T3 T (A,-3) )

n

(5.13b)

(5.13¢)
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6 16 N=1 N=3 N=5 N=9 N=10

0° 0-12356 0-10503 0-12021 0-12233 0-12314 0-12393

6° 0-11340 0-10620 0-11615 0-11459 0-11293 0-11377
12° 0-08575 0-10202 0-08555 0-08473 0-08517 0-08611
18° 0-04875 0-07757 0-04433 0-04940 0-04809 0-04909
24° 0-01498 0-03160 0-02213 0-01505 0-01445 0-01526
30° 0 0 0 0 0 0

a g(0) N=1 N=3 N=s5 N=9 N=10
0° ~0-6322 —0-6350 —0-6299 —-0-6312 —0-6318 —~0-6325

6° —0-5455 —0-5506 —0-5477 —0-5465 —0-5451 —0-5459
12° —0-2953 -0-3002 —0-2941 ~0-2941 —0-2947 - 0-2956
18° 0-09046 0-09824 0-09202 0-09047 0-09116 0-09023
24° 0-56803 0-58484 0-56453 0-56675 0-56880 0-56806
30° 1-0835 1-0319 1-0780 1-0812 1-0821 1-0822

TasBLE 4. Convergence of the partial sums of the series (5.14) for wedge angle of 60°:
N (n)
(f) =10x X% C,,(%% )).
g -N 24

In tables 3 and 4 we have the convergence of the partial sums

N
f~ 3 Coe™(0) (5.14)
N

as a function of the truncation number when 24 = 30° and 24 = 60°. The rapid con-
vergence evident in these tables is characteristic of all the results (10° < 28 < 90°)
computed by us. A good representation can be obtained in two terms.

Mathematical convergence may be established by application of the theorem of
Joseph (1977) which holds for edge data satisfying (5.3) and the conditions

f(i/?:ﬂ) =f'(iﬂ,ﬂ) = 0.

Equation (5.15) may be verified most easily by using the first of the forms of f(6, 8)
given by (3.13b). The representations (5.13) are not optimal for the demonstration of
rapid mathematical convergence. To demonstrate rapid mathematical convergence
from (2.13b) we must account for cancellations at large values of n. It is much easier
to demonstrate mathematical convergence using the first of the forms of f(, £) given
by (3.13b). The integrals I, are integrated twice by parts using (5.15). This integration
by parts puts a factor whose largest terms are O(A2) in the denominator of the C,,
ensuring rapid convergence. To be precise, the asymptotic representations (4.5a,b)
imply that when n is large

cosd, and sinA,f are O(nt)

(5.15)

and . = O(1/n3).
On taking account of cancellations

F,=0(1), C,=0(1/n¥)
and

C, ¢{M(0) = O(1/n?).
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F1aure 2. Level lines of the edge eddies (5.6) in the
reference domain. Wedge angle 2§ is 60°.

—Sx[0-*

F1GUrE 3. Streamlines (5.19) of the flow in the reference
domain. Wedge angle 24 is 60°.

The convergence of the series
¥ = 3 G, t$M(0)/An(A, —2) (5.16)

is even more rapid; it is dominated by terms of order C/n4, at least.
The expression (5.16) gives the edge eddies. These eddies are required to turn the
stream around at the edge. The real stream function ¥(¢,0), given by (3.13a), is
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Ficurke 4. Level lines of edge eddies (5.6) in. the reference
domain. Wedge angle 25 is 10°.
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108 x £(6, £)

(/] 16 N=1 N=3 N=5b N=9 N=10
On the top: ¢ =1
0° 2:43372 2:44776 2:43352 2-43363 2-43368 2.43369
1° 2:24267 2:253717 2-24292 2-24268 2:24263 224264
2° 1-71647 1-71889 1-71609 1-71642 171642 1-71644
3° 0-99585 0-98791 0-99574 0-99579 0-99581 0-99583
4° 0-31485 0-30605 0-31550 0-31492 0-31481 0-31482
5° 0 0 0 0 0 0
On the bottom: ¢t = 0-5

0° 2-43372 2:32407 2-44525 2-43388 2-43340 2:43369
1° 2:24267 2-18042 2:24255 2-24250 2-24235 2-24263
2° 1-71647 1-75339 1-71876 171639 1-71617 1-71644
3° 0-99585 1-09052 0-99426 0:99620 0-99560 0-99583
4° 0-31485 0-37174 0-31285 0-31407 0-31468 0-31482
5° 0 0 0 0 0 0

TaBLE 5. Convergence of the top edge series (6.1) and the
bottom edge series (6.2) when 24 = 10° and afb = 0-5.

k3 108 x f(6, ) N P
108 = — L2 _ g8 An—3 A1y T
7 X 0 16 10 x_E}]V(C,,t +D,t )An(/‘n_z)

dominated by the term %3(0, F), except at the edges and the effect of the eddies
on the interior flow is small.

In figures 2 and 3 we have plotted the level lines in the reference configuration of
the stream function W'(¢, 0) giving the edge eddies and the physical stream function
¥(t, 0) for 28 = 60°. Figure 4 shows edge eddies for 24 = 10°. When 23— 0 the number
of edge eddies increases without bound; this limit can be made to coincide with the
problem studied by Joseph & Sturges (1975). We have already noted that the most
persistent eddies, those for which Re A, is smallest, A, A,, ..., in that order, disappear
sequentially as 28 is increased beyond 146°. All of the eigenvalues A, are real when
28 > 180°.

6. Convection in sectorial rings

We are now considering problem (3.14) when a > 0. The solution of this problem
is given by (5.1). The constants C, and D, may be determined from the edge con-
ditions. The edge condition at the top is (5.2) and this may be expressed as in (5.4)
with C, replaced by C, + D,,:

1 (3f(6,8) )
16 \ —K cosf—~3K,cos0(3sin26—1)+2cosf —@sind

= S G+ (5h). @

s ¢4
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3
10—3‘1—{;“0’—@ N=1 N=3 N=5 N=9 N=10
On the top: ¢t =1
0° 411875 4-13268 411848 4-11868 4-11874 4-11876
6° 3-78008 3-79223 3-78074 3-78014 3-78007 3-78008
12° 2-85819 2-86318 2-85780 2-85816 2-85817 2-85819
18 1-62492 1-61867 162476 1-62489 1-62490 162492
24° 0-49930 0-49028 0-50014 0-49941 0-49928 0-49929
30° 0 0 0 0 0 0
On the bottom: ¢ = 0-5
0° 4-11875 3-92173 4-11600 411932 4-11858 4-11875
6° 3-78008 3-66876 3-78001 3-77960 3-77991 3-78008
12° 2-85819 2-92578 2-86264 2-85839 2-85803 2-85819
18° 1-62492 1-79603 1:62171 1-62522 1-62478 1-62492
24° 0:49930 0-60184 0-49616 0-49840 0:49920 0-49930
30° 0 0 0 0 0 0
TaBLE 6. Convergence of the top edge series (6.1) and the bottom
edge series (6.2) when 27 = 60° and afb = 0-5.
¥ 108 x £(6,8) A P
—=x 103 = ————"— = 103x X (C,tAr3 4D, t-An-1) L1 |
p 16 A S Wy v
At the bottom, ry = a = bty, t, = afb, t, < 1, we find that
An—-3 ~Ap—~
N 2 3 - (Cnton _Dntﬂ ) ¢(n)
a)=2s0n )=z [\ a2 A (6.2)
16 to T N
¥ (Cotr=2 4 Dy t-2n1) g0

Applying the biorthogonality conditions (5.10) and (5.11) to (6.1) we find that the
coefficients C, + D, are given by
Cn+D'n = n/Fna (6.3)
as in (5.12), where F, is given by (5.11) and I, by (5.13a). Turning now to (6.2) we
note that
Cutyn™®  Dptghnt
Sf(0 0 n g ) (n)
fﬂ Y™, i) ((1) —;) s h/0A) ( -2, # d6 =0. (6.4)
-8

(£3/16) £ (0, B) — (Cytgn=®+ Dyt=22=1) o™

Evaluation of (6.4), followed by elimination of C, = — D, +1I,/F, in the resulting
expression, leads to the following expression for the coefficients D, :

o A-A—2)
Ap—8 _ $=Ap—1 A;--3 Gh i —A;—1
Fn‘Dn(tO tO )+l=§lelBln (tol + /\l(3—/\l) t0 L ) .
=In(t6\"_3—1)+ Z —Fl',Blntél—s: (65)

l=—w

where B, =3= A'f Uimghds, n=1x1, £2,....



Stokes flow in wedge-shaped trenches 459

N

10~

Ficure 5. Edge eddies. 28 = 10°, afb = 0-5.

Equations (6.5) form an infinite set of algebraic equations for the coefficients D,.
We solved (6.5) by truncation and checked the convergence of the truncated solution
numerically. In all cases, the convergence was rapid (see tables 5 and 6 for represent-
ative examples).

In figures 5 and 6 we have plotted the level lines in the reference configuration of
the stream function (¢, #) giving the edge eddies and the physical stream function
¥ (¢, 0) for the sectorial ring with a/b = 0-5 when 28 = 10° and 28 = 60°.

7. The shape of the free surface and the secondary motion in the deformed
domain ‘

The shape of the free surface is determined by the requirement (2.3d) that the jump
in the normal component of the stress should be balanced by surface tension. At first
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~_

Fiaure 6. Edge eddies. 24 = 60°, afb = 0-5.

FIGURE 7. Streamlines in the deformed domain ¥, when a fixed contact line boundary condition
is assumed. The streamlines in the reference domain are shown in figure 3.
order this condition may be written as
‘oulh
]

F oMW + o (RO + Rf(}?,)/Rg +pgRMDcosf = 0 (7.1)
o

on 7y = R,. This equation is to be solved relative to side-wall boundary conditions
arising from (2.4a,b), ]
RO(+f)=0 or RY(+p) =0, (7.2)
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é H x 108 H x 103
0° 0 0
3° 0:2494 0-6079
6° 0-4787 1-195
9° 0-6686 1:740
12° 0-8021 2-226
15° 0-8648 2:638
18° 0-8468 2-963
21° 0-7434 3:198
24° 0-5576 3:343
27° 0-3012 3-411
30° 0 3-425

TasLE 7. The correction coefficients H for the free surface on a liquid in a sectorial cavity
with wedge angle 24 of 60°. The first column is for adhesive contact H( + f#) = 0. The second
column is for flat contact problem, H’(+ ) = 0.

F1GurE 8. Streamlines in the deformed domain ¥, when a fixed angle of perpendicular
contact is assumed. The streamlines in the reference domain are shown in figure 3.

and a volume conservation condition
/3
f RV A0 = 0., (1.3)
-8

To compute R from (7.1) we must first find the function ®<V; the radial com-
ponent of velocity usl may be obtained by differentiating the stream function. Since

u(® is known, we may obtain @1 by integrating (3.9). After writing equations in
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terms of the dimensionless quantities introduced in (3.13a) with

__B_ (1)
7= gk ®
op
= 1,
and H = poch3R
we find that
i On(/\n“l) Ay—2 : 1 3 3
Pt,0)=-2 Y A _2)1,‘ w2cos A, fsin(A, —2)0—H[(K,+ }K,—})

esinf@+6cos 6]+ 4,,
where A4, is a constant, and

H”+H+Tlg[(2K1—3K2— 1)sin @+ 60 cos 0 + 6 sin3 0]

A~ (A, —1)(4—2,) . _
+ Z C, A _2cos (A,—2)BsinA, 5+—W cos A, fsin(A, —2)8} = 0.
(7.4)
The general solution of (7.4) is
H=((1-2K,+3K,)sin0 +3K,sin*d — 60%sin §
+(4K,+3K,—8)0cos0)[64
—2ReX O, (A, —4) cos A, Bsin (A, — 2) O/, (A, — 2) (A, — 3)
n=1
— 008 (A, —2) B5in A, 0/(A, + 1) (A, —2))
+Bycost+ B,sinf+A4,. (7.5)

The constants B,, B, and 4, may be determined from equations following from
(7.2) and (7.3). When H(+ ) = 0, then 4, = B, = 0 and

B, = 614(21{1—31{2_ 1+682—3K,sin? B+ (8 — 4K, — 3K )/’)‘I’I‘i;ﬁ)

1 A, —4) .
+§i_fl—Z’Ren§10" (An(/\n_‘?) =3 cosA, fsin(A,—2) 8
1
—————~(/\n+1)(l\n_2)cos 2) fsin A, /;’)

When H'(+ ) = 0,then 4, = B, = 0 and

32:_1_(7_2K1—6K2+6ﬂ2+9K25in2ﬁ+(4+4K1+3K2)'b;slnﬁ)

64 in
4(4+/\n_/\gz)
T o3 (g s A eos (/\n—z)/})_

1 @
* OSﬂRengl On (/\
Numerical values of the correction coefficient H are given in table 7.

The correction coefficient allows us to compute the shape of the free surface when ¢
is small. We may then, following procedures of the Lagrangian theory of domain
perturbations (Joseph & Sturges 1975), obtain the level lines of the stream function
in the deformed domain by inverting the scaling transformation (3.4). In figures 7
and 8 we show how different boundary conditions for A induce a different scaling
(3.4) of the streamline patterns (figure 3) in the reference domain.
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