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In  this paper we develop a separation of variables theory for solving problems of 
Stokes flow in wedge-shaped trenches bounded by radial lines and concentric circles 
centred at the vertex of the wedge. The theory leads to a set of Stokes flow eigen- 
functions which in the full wedge reduce to the corner eigenfunctions studied by Dean 
& Montagnon (1949) and Moffatt (1964). Asymptotic formulae for the distribution of 
eigenvalues are derived, an adjoint system is defined and is used to develop an algorithm 
for the computation of the coefficients in an eigenfunction expansion of edge data 
prescribed on the circular boundaries. To illustrate the algorithm we find the motion 
and the shape of the free surface in a wedge-shaped cavity heated from its side. 

1. Introduction 
The aim of this paper is to contribute to a ‘separation of variables’ theory for Stokes 

flows in cavities of simple configuration. Generality in a ‘separation of variables’ 
theory is associated with the applicability of the techniques to many problems in 
many domains of simple shape. We claim this kind of generality for the theory given 
here. The techniques developed here owe much to the excellent ideas which R. C. T. 
Smitth (1952) introduced in his study of stresses in a semi-infinite strip clamped at its 
side and loaded at  its top edge. Smith’s ideas were used by Joseph & Fosdick (1973) 
to study a narrow-gap approximation for secondary motions generated in the problem 
of the free surface on a liquid between cylinders rotating at different speeds. A more 
complete analysis, including numerical analysis, of the problem of Stokes flow in 
rectangular trenches was given by Joseph & Sturges (1975) in their study of the free 
surface on a liquid filling a rectangular trench heated from its side. In  that paper it is 
shown that Smith’s biorthogonal series are formally analogous to complex Fourier 
series and, though the biorthogonal eigenfunctions are much more complicated than 
circular functions, the ‘Fourier coefficients ’ may be computed by simple algorithms. 
Joseph & Sturges (1  975) also showed how the eigenfunction expansions should be used 
to compute solutions when the rectangular strip is not semi-infinite but, instead, has 
a solid bottom. 

Smith (1952) also established conditions on the edge data sufficient to guarantee 
the convergence of the biorthogonal series. But Smith’s conditions are too restrictive 
for applications. Joseph (1977) and Joseph & Sturges (1977) showed that much less 
restrictive conditions suffice to guarantee convergecce. The biorthogonal series will 
converge in almost every conceivable application. The rate of convergence depends 
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on the functions which are to be expanded. As with elementary Fourier series, con- 
vergence to ‘ load’ functions, like step functions and ramp functions, is conditional 
and leads to Gibbs’ phenomena. 

The same types of biorthogonal expansions were used by Joseph (1974) in a study 
of the free surface on the round edge of a flowing liquid filling a torsion flow viscometer. 
This is the first case where this type of eigenfunction expansion arises for a Stokes flow 
problem which is not biharmonic. Similar eigenfunction expansions are required for the 
axisymmetric problems of Stokes flow between concentric cylinders studied by YOO 
& Joseph (1977) and for the problem of axisymmetric flow in a cone studied by Liu & 
Joseph ( 1  977). The study of the free surface on a viscoelastic fluid between oscillating 
planes (Sturges & Joseph 1977) also falls within the domain of application of the 
biorthogonal series. This problem may be reduced to  the study of V4$+A2V2$ = 0 
( A 2  is complex) where $ and the normal derivative of $ vanish on the side-walls. 

The list of problems given in the last paragraph is a small sample of those which 
can be solved by biorthogonal eigenfunction expansions. The eigenfunctions required 
in these different problems depend on the given data and on the domain of flow; 
though the data and domains of flow differ from problem to problem, the expansions 
for different problems share common properties which appear to be intrinsic to Stokes 
flow in cavities. 

I n  this paper we shall show how the corner eigenfunctions of Dean & Montagnon 
(1949) and Moffatt (1964) may be used to generate biorthogonal series solutions of 
Stokes flow problems in a wedge. The method is illustrated in the course of the solution 
which is developed for the title problem. I n  this example of a Stokes flow a motion is 
generated by buoyancy which is induced by density differences associated with 
heating one side-wall. 

It is perhaps of interest that our work does not fully support the widely accepted 
view of Stokes flow in corners. We think that slow flow in a corner is determined by 
global considerations arising out of analysis of the entire field of flow and that t,here 
need not be eddies in corners. I n  our problem, the flow wedge eigenfunctions are 
required to turn the flow around a t  the free surface. No corner eddies enter the solution 
even though ‘ corner ’ eigenfunctions do (see figures 3, 7 and 8). 

2. Mathematical formulation 
The free-surface problem to be studied in the next sections is sketched in figure 1. 

Motion of the liquid is induced in the wedge by the driving action of density variations 
induced by temperature gradients. The motion is governed by the Oberbeck-Bous- 
sinesq equations in Ye, 

div u = 0, u = e,u, + e,u,, 

KV=T-U.VT = 0, ( 2 . 1 4  

pV2~+(egs inO-e , cosO)pga(T-To) -pu .Vu-V@ = 0, 

0 =p-p,+pgrcosO; 

u(r, k p)  = U ( U ,  0) = aT(a, O)/ar = 0, 

by the boundary conditions on the rigid walls, 

T(r,  + P )  = To + a€; 

(2 . lb )  

(2.2a) 

(2.2b) 
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r = R ( B , e )  
/ (free surface) 
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r,=b (frec surhccs) I 

FIUURE 1. Fluid fills the sectorial region 
Ye= ( r , 8 : a ~ r d R ( B ; E ) , - P ~ B d P ) .  

The temperature difference between the side-walls is E. The top and bottom boundaries are 
insulated, The configuration of Ye shown in ( a )  is mapped in the reference configuration yo of the 
rest state (R(8; 0) = b, see ( a ) )  by the scaling transformation: 

r - a  r - b  
r = R ( B ,  E )  0 - - a L ,  

b-a  b - a  
8 = Oo. 

The problem is solved in 9;. 
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by free-surface conditions that the free surface r = R(8; e )  is insulated, the normal 
component of velocity and the shear stresa vanish and that the jump in the normal 
stress is balanced by surface tension, 

( 2 . 3 ~ )  

Ru, - R ' u ~  = 0, (2.3b) 

by the requirement that R(8; E )  satisfy an adherence condition at  a sharp edge, 

R( +P;  e)  = 0, ( 2 . 4 ~ )  

or a contact angle condition with horizontal contact, 

R'( + P ; B )  = 0, (2.4b) 

and by the requirement that the total volume of fluid is prescribed and equal to 

Vc = /3(b2-a2) = Q R2(8; 8 )  do. L 
The constants appearing in the equations are K ,  thermal diffusivity; p ,  viscosity; 
p, density; g, gravitational constant; a, thermal expansivity ; To, reference temperature; 
Pa, atmospheric pressure; B ,  temperature perturbation; cr, surface tension; K ,  volume; 
8, semi-vertex angle; b, mean radius of the free surface; a ,  radius of wedge bottom. 

Methods for relaxing condition ( 2 . 4 b )  when the prescribed angle is not flat are given 
by Joseph, Beavers & Fosdick (1973). When (2.4b) holds, it  is likely that the per- 
turbation series converges and is regular in the neighbourhood of the contact line 
(Sattinger 1976). 

3. The perturbation series 
When e = 0, there is no motion, T(r,  8) = To, cD = C, is constant, and 

C,+pgRcos8 = uJ, Vo = p(b2-a2),  (3.1) 

where R satisfies (2 .4a )  or ( 2 . 4 b ) .  The solution of (3.1) gives the configuration of the 
rest state. Our analysis requires that Yo be a perfect circular sector. The solution of 
(3.1) is not a perfect circular sector so long as the ratio S of the mean radius b of the 
free surface to the capillary radius 6 = b/(cr/pg)t =k 0. We shall assume that the solution 
can be constructed as a double power series in 8 and S2. When e = S = 0, Yo is aperfed 
circular sector. The free surface is then given by 

R(0; E ,  6 2 )  = b + R[0JIS2 + R[l.oI~ + 0(€S2). (3.2) 
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The functionf(8) = R[OJI is the static correction for small 6; that is, when the surface 
tension u is large or the product pgb2 is small. We find that 

p" + f + b  cos8 = 0, f d 8  = 0, f( 5/31 = 0, or f'( /3) = 0, (3.3) 

andf = A cos 8 - @'sin 8 where A is to be determined from the boundary conditions. 
We are interested in calculating the terms which, like R[1.01, are first derivatives of 

the solution with respect to E evaluated at ( B ,  6) = (0 ,O).  This is equivalent to setting 
6 = 0 at the outset; 6 = 0 has been assumed implicitly in the formulation given in 
$2. With 6 = 0 we may define the linear scaling transformation 

r - a  r,-b 
r = B ( 0 ; e ) L - a -  

b - a  b - a  (3.4) 

Using (3.4) the deformed domain Vc is mapped into the reference domain. The solution 
of the problem in Ye may now be obtained as a power series whose coefficients are 
evaluated on the reference domain 

where 
( . ) [ n l =  -+-- a d r a n  

(a€ dear) (.I 

and r(e) is given by (3.4). The term corresponding to n = 0 is the rest state with 
S = 0, T[O] = To, R[Ol = b and @ L o ]  = - c / b .  It follows that 

(. )[11 = 2 a( 1 ( . ) ( 1 ) ,  as 
and, at  lowest order, 

The first-order temperature correction must satisfy 

where we have dropped the subscripts on ro and 8,. Equation (3.7) implies that 

~ ( 1 )  = epp. (3.8) 

(3.9) 

The velocity field at  first order is solenoidal and satisfies 

, u V ~ U ( ~ )  + apg( e, 8 sin 8 - e, 8 cos 8)  - V W )  = 0. 
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Introducing the stream function @, 

C. H .  Liu and D.  D .  

we derive, from (3.9), the governing equation 

Joseph 

and, on the free surface r,, = b, 

(3.10) 

= *(a,O) = 0, (3.11) 
ar 

(3.12) 

Equations (3.10), (3.11) and (3.12) determine +uniquely. 

the following change of variables : 
Toreformulate theproblem (3.10), (3.11) and (3.12) asanedgeproblemweintroduce 

t = ro/bl 

where 

( 3 . 1 3 ~ )  

[(p+sinpcosp) ( ~ 0 ~ 2 8 -  cos2p) cos O/sinpcoszp+ 2(8sinOcosp 
1 

f (e,p) = 2 p  
- /3 sin /3 cos #)I 

(3.13b) = K ,  cos 8 + K ,  C O S ~  8 + Bsin 8, 

K ,  = - (2p sin2 p + & sin 2p + P)/sin 2p 

K ,  = (p + 8 sin 2p)lsin 2p cos2 p. and 
We find that 

V*Y = o in Vo(t, 8)  = [ t ,  8 :  (a/b) G t G 1, -p  G 8 < 81, ( 3 . 1 4 ~ )  

(3.14b) 

( 3 . 1 4 ~ )  

(3.14 d)  

(3.14e) 
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n 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Complex roots A, (2p = 10") 
25*14114414+ 12.86408537; 
62.38088865 + 17.74998684; 
98.82482881 + 20.316817294 

135.06392018 + 22.08005326; 
171*21595479+ 23.42596613; 
207.32213453 + 2441505806i 
243.40094426 + 25.429887243 
279.46200350 + 26.21862740; 
315251084567 + 26.91186944; 
351-55089380 + 27.530262224 
387.58438596 + 28*088404491 
423.61285082 + 28.59700027i 
459.63737011 + 29.06413212; 
495.65873208 + 29.49605305; 
531.67752542 + 29.89770025; 
567.69419915 + 30.27304019i 
603.70910203 + 30.62530754; 
639.72250929 + 30.957174823 
675.73464119 + 31.27087556; 
711.74567619-r- 3166829546; 

Complex roots A, (2p = 30") 
9.06296527 + 4.202867093 

21.46721456+ 5.836601124 
33.61272764 + 6.69310333; 
45.69125654+ 7.28117391; 
57.74125228 + 7.72996854i 
69.77619786 + 8.09308766i 
81.80215150+ 8-39808581; 
93432226927 + 8.66103595i 

105.83836809+ 8.89214245 
117-83836809 + 9.09829226; 
129.86261867 + 9.28435393i 
14147200892 + 9.45389689i 
153.88009929 + 9.609616233 
165.88714920 + 9.75359690; 
177.89335246 + 9.887485054 
189.89885693 + 10.01260313i 
201.90377748 + 10*13002957i 
213.90820478 + 10.24065539; 
225.91221140 + 10.34522520; 
237.91585616 + 10.44436766; 

TABLE 1. Twenty first quadrant roots of (4.4). 

4. Eigenfunctions and eigenvalues 

functions ' : 
We will construct the solution of (3.14) as a 'Fourier series' of even 'corner eigen- 

tkn  +p (el (4.1) 

and t - h n + 2 + p  (e), (4.2) 

+in) (el = cos ( A ,  - 2) p cos A, e - cos A,P cos (A ,  - 2) e. (4-3) where 

The functions (4.1) and (4.2) are on the null space of the operator 

Moreover, +I,)( +P)  = 0 

and, if 

then +;y + p )  = 0. 

sin [2/3(h, - l)] + ( A ,  - 1) sin 2p = 0, (4.4) 

There are an infinite number of firs% quadrant complex roots A,, A,, A,, . . ., of (4.4). 
The roots of the equations sin 2p(A - 1) + ( A  - 1)  sin 2p = 0 are symmetrically disposed 
in the four quarters of the complex p = A - 1 plane, so that all roots may be obtained 
from the first quadrant roots. 

The eigenfunctions (4.3) and eigenvalues (4.4) were studied by Dean & Montagnon 
(1949) and by Moffatt (1964). Dean & Montagnon (1949) noticed that when 2p is less 
than a critical angle 2p, say, approximately equal to 146', equation (4.4) admits no 
real solutions (other than the physically irrelevant value ,u = 0) .  As 2p increases from 
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n 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Complex roots A, (2p = 60") Complex roots A, (2p = 90") 
5.05932902 + 1.95204995i 3.73959336 + 1.1 1902454i 

11.24572709 + 2.777963093 7.84513517 + 1.68163470i 
17.31416372+ 340778901i 11.88555236 + 1.970199501 
23.35138167+ 3602397853 15.90789082 + 2.167332603 
29.37518379 +3.72707185i 19.9223 120 1 + 2.3 1746456i 
35.39187214 + 3.90878729i 23.93248783 + 2-43880443i 
41.40429475 + 4.06138337i 27.94009829 + 2.54065704i 
47.41394127 + 4.19292317i 31.94602973 + 2.62843143i 
53.42167189 + 4.30852189i 35.95079721 + 2.705554223 
59.42802037 + 4.41 163003i 39.95472195 + 2.774334596 
65.43333653 + 4.50468594i 43.95801537 + 2.836403226 
71-43785984 + 4.58947683i 47.96082267 + 2.892954753 
77.44176005 +4*66735185i 51.96324707 + 2.94489061i 
83.44516102 + 4.73935455i 5596536410 + 2-99290785 
89.44815542 + 4-80630874i 59.96723038 + 3.03755659i 
95.45081400 + 4-86887616i 63.96888923 + 3.079278673 

101,45319176 + 4.92759642; 67.97037437 + 3.11843427i 
107.45533217 + 4.98291529i 71.97171252+3.155320943 
113.45727003 + 5.035205291 75.97292509 + 3.1901872% 
119.45903358 + 5-0847809li 79.97402945 + 3.223243181 

TABLE 2. Twenty fist quadrant roots of (4.4). 

2,8 to n, the number of real solutions of (4.4) increases from one to infinity. Moffatt 
(1964) interpreted the solutions (4.1), (4.2), (4.3) and (4.4) as a sequence of corner 
eddies of decreasing size and rapidly decreasing intensity. Tables 1 and 2 give the first 
20 eigenvalues A, for wedge angles 2P of lo", 30°, 60°, and 90'. The asymptotic 
formuIae 

Reh, N l+(n-a)n/P,  (4.5a) 

1 
Im A, N - In [lm(4n - I)], 

2P 
(4.54 

where k = sin 2,8/2/3, approximate the real and imaginary parts of the first quadrant 
roots for large n. The formulae (4.5) follow from an elementary asymptotic analysis 
using a method introduced by Hardy (1 902) and seem not to have been given before. 
They give rough approximations for small n > 1 and quite good approximations when 
n is large. We find, as an approximation, that 

sin 2/? 1 
Imh, > 0 when - > 

2,!l n(4n-1) 

The inequalities of (4.6) hold when ,!l < P1(n), where 

1 - - sin 2,!ll(n) 
2Pl(n) n(4n - I )  ' (4.7) 

Clearly, limPl(n) = n. 

It follows that for all values of ,!l < n there are an infinite number of complex, first 
quadrant eigenvalues. Moreover, we have already remarked that Dean & Montagnon 

n + W  
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(1949) have shown that only complex roots and no real roots exist when 2P is greater 
than some value near 146". The value P1( I), given by (4.7), 

is an approximation of this value. 
The eigenfunctions (4 .3 )  are even functions of 8. We study the even eigenfunctions 

because the edge data are even. When the edge data are odd, we could again superpose 
eigenfunctions (4.1) and (4.2) with $Jn)(8) replaced by $ln)(8), where 

& n ) ( ~ )  = sin(An-2)PsinA,e-sinA,psin(A,-2)e. 

The eigenvalue equation for the odd eigenfunction is 

sin [2p(A, - 1 )I - (2, - 1) sin 2p = 0. (4.8) 

It is convenient to number all of the eigenvalues A, which have positive real parts. 
Hence, we define 

where the overbar designates the complex conjugate. It then follows that 

A_, = x,, (4.9) 

- 
$i-n) (8) = $in) (8). (4.10) 

5. Solution of the edge problem 
The solution of (3.14) can be written as 

OD 

Y = C [C, tA~+D, t -A~+2]$~")(8) /A, (A, -2) ,  
- m  

where C,, = Do = 0 and, since the given edge data are real and A_, = X, and 
- 

#l-w)(8) = &")(8), C-, = C ,  and D-, = D,. 

Equation (5.1) is biharmonic and satisfies the side-wall boundary conditions. We must 
show that the coefficients C, and D,, can be selected such that (5.1) satisfies the given 
conditions at the bottom t = a/b and at the top t = 1. It is convenient to consider 
the special case a = O first. 

5.1. The full  Rector (a = 0 )  

When a = 0 the velocities corresponding to (5.1) are unbounded as t -+ 0. To obtain 
a bounded velocity we set D, = 0 for all n. We next introduce the boundary data 
vector 
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The given edge condition (5.2) is compatible with the side-wall boundary conditions 
(for a full discussion, see Joseph (1977)) 

g(0)dO = 0g(O)dO = 0. s_" , s_", 
The boundary data (5.2) are now expanded in a series of eigenfunctions 

#;( n) . 1 
where qp) = 

&(An - 2) 

To determine the constants C, we introduce the vectors 

The vector cp(,f satisfies the differential equation 

~p"(n) + A,. c$%) = 0, 

(5.3) 

(5.7) 

where 
An = (An(An-2) O - A n ( h n - 2 )  (An-2 )2+Ak 1 ' 

and the boundary conditions #I$"'( f p)  = r#n) ( f p)  = 0.  The adjoint vector +(n) 
satisfies the differential equation 

+"(n)++(n).A, = 0 (5.8)  

and the boundary conditions $4") ( +_ p )  = $;(")( +_ p)  = 0 .  We find that 

*p = fp, \ 

From (5.7) and (5.8) and the boundary conditions we find the following property of 

J!B+(m). A .  c p ~ 0  = o if (A, - i ) 2  $; (A,,, - i ) 2 ,  (5.10) 

biorthogonality : 

- ,  

where A = ( y  -3. 
Using (4.3) and (5.9) we compute 

2(A,- 1)2sin2,8cosA,,8cos(A,-2)/3 - 
Ak(A, - 2 ) 2  

1. (6.11) 
(A; - 2A, + 2) cos A, /3 cos (A, - 2) Psin 2(An - 1) ,8 - 

h2,(hn- 1) (An-2)2 
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e f (fa N = l  N = 3  N = 5  N = 9  N = l O  

0" 0-06267 0.02035 0-05420 0.05949 0.06159 0.06359 
3" 0-05769 0.04210 0.05307 0.06074 0.05650 0.05862 
6" 0.04404 0.08416 0.0 4 3 2 7 0.04143 0.04255 0.04495 

0.09584 0.01406 0.02705 0-02369 0.02627 9 O  0.02543 
0.04903 0.02715 0.00834 0.00650 0.00861 12O 0.00799 

1 2 O  0 0 0 0 0 0 

e do) N = l  N = 3  N = 5  N = 9  N =  10 
0" - 1.235 - 1.249 - 1.229 - 1.232 - 1.234 - 1.235 
3" - 1.081 - 1.098 - 1.086 - 1.083 - 1.080 - 1.082 
6" - 0.626 - 0.634 - 0.622 - 0.624 - 0.624 - 0.626 
9O 0.1187 0.1458 0.1222 0.1189 0- 1 205 0.1182 

1 2 O  1.1296 1.1740 1.1208 1-1260 1.1330 1.1298 
15" 2.3770 2.2343 2.3636 2.3732 2.3760 2.3761 

TABLE 3. Convergence of the partial sums of the series (5.14) for wedge angle of 30': 

With these preliminaries aside we may now use the biorthogonality conditions 
(5.10) and (5.11) to compute the C,. Recalling that f = I: C,<p(n), we find that 

The integral I, is computed using (5.2) and (5.9). We find that 

I, = ~ ~ [ P , c o s ( A , - ~ ) ~ + Q , c o s A , P ] ,  
where 

sin(A,-i)/3 sin(A,+l)P) 
+ A n + l  

P,= 3Kl-k- An+2 (-K,+6K2+2)) ( A,- 1 

sin (A, - 3) p sin (A, + 3) ,8 
A,+3 

( An 

+QK, 1-3: ( A  +2)) ( A,-3 + ( An 

3sin(A,-l)P 3sin(An+1)P 
An- 1 + A , + l  

+ 

sin(A,- 1)P /3cos(A,- 
A,- 1 

+ - 
(An - 1)' 

Q n =  ( sin (A, - 3) ,8 sin (A, - 1) /? 4-A, 
A,-2 A,- 1 - 3K1+- + 

3sin(A,-3)/3 3sin(A,-l)P + A,- 1 A,-3 
4-A, sin(A,-l)p - /3cos(A,-l)p 

-I- 

- (3+-) ( (An-  1)' ( A n  - 1) 

(5.12) 

(5.13 a )  

(5.13b) 

(5.134 
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e f (8) N = l  N = 3  N = 5  N = 9  N =  10 
O0 0.12356 0.10503 0.12021 0.12233 0.12314 0-12393 
6' 0.11340 0.10620 0.11615 0.11459 0.11293 0.11377 

12" 0.08575 0.10202 0.08555 0.08473 0-08517 0.08611 
18' 0.04875 0.07757 0.04433 0.04940 0.04809 0.04909 
24' 0.01498 0.03160 0.02213 0*01505 0.01445 0.01526 
30' 0 0 0 0 0 0 

0 9P) N = l  N = 3  N = 5  N = 9  N=lO 
0" -0.6322 - 0.6350 - 043299 - 0.6312 -0.6318 - 0.6325 
6" -0.5455 - 0.5506 - 0.5477 - 0.5465 - 0.5451 - 0.5459 

12" -0.2953 - 0.3002 - 0.2941 - 0.2941 - 0.2947 - 0.2956 
18" 0.09046 0.09824 0.09202 0.09047 0.09116 0.09023 
24" 0.56803 0.58484 0.56453 0.56675 0.56880 0.56806 
30" 1.0835 1.0319 1.0780 1.0812 1.0821 1.0822 

TULE 4. Convergence of the partial sums of the series (5.14) for wedge angle of 60": 

(-f) = 10 x 2 c, ($). 
- N  

In  tables 3 and 4 we have the convergence of the partial sums 

as a function of the truncation number when 2/3 = 30" and 2/3 = 60". The rapid con- 
vergence evident in these tables is characteristic of all the results (10' < 28 < 90") 
computed by us. A good representation can be obtained in two terms. 

Mathematical convergence may be established by application of the theorem of 
Joseph (1977) which holds for edge data satisfying (5.3) and the conditions 

f( k B, P )  = f'( k P, P )  = 0. (5.15) 

Equation (5.15) may be verified most easily by using the first of the forms of f ( 0 , P )  
given by (3.13 b). The representations (5.13) are not optimal for the demonstration of 
rapid mathematical convergence. To demonstrate rapid mathematical convergence 
from (2.13b) we must account for cancellations at large values of n. It is much easier 
to demonstrate mathematical convergence using the first of the forms off($, 8) given 
by (3.13b). The integrals I, are integrated twice by parts using (5.15). This integration 
by parts puts a factor whose largest terms are O ( h i )  in the denominator of the C,, 
ensuring rapid convergence. To be precise, the asymptotic representations (4.5a, b)  
imply that when n is large 

cosh,/3 and sinh,/3 are O ( d )  

and I, = o(1p). 
On taking account of cancellations 

and 
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FIGURE 2. Level lines of the edge eddies (5.6) in the 
reference domain. Wedge angle 28 is 60'. 

FIGURE 3. Streamlines (5.19) of the flow in the reference 
domain. Wedge angle 2p is 60'. 

The convergence of the series 
m 

Y = c,thng5p(o)/A,(hn - 2) 
-a 

(5.16) 

is even more rapid; it is dominated by terms of order C/nQ, at least. 
The expression (5.16) gives the edge eddies. These eddies are required to turn the 

stream around at the edge. The real stream function $(t ,8),  given by (3.13a), is 
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FIGURE 4. Level lines of edge eddies (5.6) in the reference 
domain. Wedge angle 2p is 10". 
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N = l  N = 3  N = 5  N = 9  

On the top: t = 1 

0" 2.43372 2.44776 2.43352 2.43363 2.43368 
1" 2.24267 2.25377 2.24292 2.24268 2.24263 
2" 1.71647 1.71889 1.71609 1-7 1642 1.71642 
3" 0.99585 0.98791 0.99574 0.99579 0.99581 
4" 0.31485 0.30605 0.31550 0.31492 0.31481 
5" 0 0 0 0 0 

On the bottom: t = 0.5 

0" 2,43372 2.32407 2.44525 2.43388 2.43340 
1" 2-24267 2.18042 2.24255 2.24250 2.24235 
2" 1,71647 1.75339 1.71876 1.7 1639 1.71617 
3" 0.99585 1.09052 0.99426 0.99620 0.99560 
4" 0.31485 0.37174 0.3 1285 0.31407 0.31468 
5" 0 0 0 0 0 

TABLE 5. Convergence of the top edge series (6.1) and the 
bottom edge series (6.2) when 28 = 10" and alb = 0.5. 

N =  10 

2.43369 
2.24264 
1.71644 
0.99583 
0.31482 

0 

2.43369 
2.24263 
1-7 1644 
0.99583 
0.31482 

0 

dominated by the term &t3f(8,/3), except at  the edges and the effect of the eddies 
on the interior flow is small. 

In figures 2 and 3 we have plotted the level lines in the reference configuration of 
the stream function Y ( t ,  8) giving the edge eddies and the physical stream function 
$(t, 8) for 2/3 = 60". Figure 4 shows edge eddies for 2/3 = 10". When 2 / 3 3  0 the number 
of edge eddies increases without bound; this limit can be made to coincide with the 
problem studied by Joseph & Sturges (1975). We have already noted that the most 
persistent eddies, those for which Reh, is smallest, A,, A,, . . . , in that order, disappear 
sequentially as 2/3 is increased beyond 146". All of the eigenvalues A, are real when 
2/3> 180". 

6. Convection in sectorial rings 
We are now considering problem (3.14) when a > 0. The solution of this problem 

is given by (5.1). The constants C, and D,  may be determined from the edge con- 
ditions. The edge condition at the top is (5.2) and this may be expressed as in (5.4) 
with C, replaced by C, + D, : 

8 - 3K, cos 8(3 sin2 8 - 1)  + 2 cos 8 - 8sin8 
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e 

0" 
6" 

12" 
18. 
24" 
30" 

0" 
6" 

12" 
18" 
24" 
30" 

N = 3  N = 5  N = 9  

On the top: t = 1 

4.11875 4.13268 4.11848 4.11868 4.11874 
3.78008 3.79223 3.78074 3.78014 3.78007 
2.85819 2.86318 2.85780 2.85816 2-85817 
1.62492 1-6 1867 1.62476 1.62489 1.62490 
0.49930 0.49028 0.500 14 0.49941 0.49928 

0 0 0 0 0 

On the bottom: t = 0.5 

4.11875 3.92 173 4.11600 4.11932 4-1 1858 
3.78008 3.66876 3.78001 3.77960 3.77991 
2.85819 2.92578 2.86264 2.85839 2.85803 
1.62492 14'9603 1*62171 1.62522 1-62478 
0,49930 0.601 84 0.49616 0.49840 0 * 4 9 9 2 0 

0 0 0 0 0 

TABLE 6. Convergence of the top edge series (6.1) and the bottom 
edge series (6.2) when 2/? = 60" and a/b = 0.5. 

N =  10 

4.11876 
3.78008 
2.85819 
1.62492 
0.49929 

0 

4.11875 
3.78008 
2.85819 
1.62492 
0.49930 

0 

At the bottom, ro = a = bt,, to = u/b, to g 1, we find that 

Applying the biorthogonality conditions (5.10) and (5.11) to (6.1) we find that the 
coefficients C, + D, are given by 

as in (5.12), where F, is given by (5.11) and I, by (5.13~).  Turning now to (6.2) we 
note that 

c n  + Dn = In/Fn, (6.3) 

Evaluation of (6.4), followed by elimination of C, = - D, + IJF, in the resulting 
expression, leads to the following expression for the coefficients D, : 

m 

= 1)+ C 3B1nt$-3, (6.5) 
l = - m 4  

where 
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FIGURE 5. Edge eddies. 2p = to", a/b = 0.5. 

Equations (6.5) form an infinite set of algebraic equations for the coefficients D,. 
We solved (6.5) by truncation and checked the convergence of the truncated solution 
numerically. In  all cases, the convergence was rapid (see tables 5 and 6 for represent- 
ative examples). 

In  figures 5 and 6 we have plotted the level lines in the reference configuration of 
the stream function Y(t, 0 )  giving the edge eddies and the physical stream function 
@(t,  8) for the sectorial ring with alb = 0.5 when 2,8 = 10" and 2,8 = 60". 

7. The shape of the free surface and the secondary motion in the deformed 
domain 

The shape of the free surface is determined by the requirement (2.3d) that the jump 
in the normal component of the stress should be balanced by surface tension. At first 
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FIQURE 6. Edge eddies. 2p = 60°, alb = 0.5. 

FIGURE 7. Streamlines in the deformed domain when a fixed contact line boundary condition 
is assumed. The streamlines in the reference domain are shown in figure 3. 

order this condition may be written as 

'a& 
ayo 

P-- W1) + v(R(') + R$i)/R: +pgR(1) cos 8 = 0 (7.1) 

on r ,  = R,. This equation is to be solved relative to side-wall boundary conditions 
arising from (2 .4a,  b ) ,  

R(l)( +p)  = 0 or R(f'( k p )  = 0, (7.2) 
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e 
O0 
3" 
6" 
9O 

12O 
15" 
1 8" 
21" 
24" 
27" 
30" 

H x 103 

0 
0.2494 
0.4787 
0.6686 
0.8021 
0-8648 
0-8468 
0.7434 
0.5576 
0.3012 

0 

H x los 
0 

0.6079 
1.195 
1.740 
2.226 
2.638 
2-963 
3.198 
3.343 
3.411 
3.425 

TABLE 7. The correction coefficients H for the free surface on a liquid in a sectorial cavity 
with wedge angle 2,8 of 60". The first column is for adhesive contact H (  +/?) = 0. The second 
column is for flat contact problem, H'( +,8) = 0. 

FIUURE 8. Streamlines in the deformed domain 
contact is assumed. The streamlines in the reference domain are shown in figure 3. 

when a fixed angle of perpendicular 

and a volume conservation condition 

To compute R(1) from (7.1) we must first find the function @(I); the radial com- 
ponent of velocity u$' may be obtained by differentiating the stream function. Since 
u(V is known, we may obtain @(I) by integrating (3.9). After writing equations in 
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terms of the dimensionless quantities introduced in (3.13 a) with 

C. H .  Liu and D. D. Joseph 

gP=- p @(I) 

PYaR 

and 

we find that 
m 

Y ( t , 0 )  = -2 2 

where A, is a constant, and 

1) t~7~-2cosh,psin(h,-2)O-t i [ (~,+ $ K ~ -  2) 
- m &(A,-2) 

sin0 + 0  cos 01 + A , ,  

H” + H +& [(2K, - 3K2- 1) sin 0 +  60 cos0+ 6 sin3@ 

(7.4) 
The general solution of (7.4) is 

H = (( 1 - 2K, + 3K2) sin8+ 3K2sin30- 602 sin0 

+ (4K1+ 3Kz - 8) 0 cos O)/64 
m 

n = l  
-2ReCC,((A,-4)cosA,Psin(A,-2)0/A,(A,-2) (A,-3) 

- cos (A, - 2) psin A, 0/(A, + I )  (A, - 2)) 

+ B, cos O +  B2sin O +  A,.  (7.5) 

The constants B,, B2 and A ,  may be determined from equations following from 
(7.2) and (7.3). When H (  +p)  = 0,  then A ,  = B, = 0 and 

2K,- 3K2- 1 +6p2- 3K2 sin2 p+ (8- 4K,- 3K2) - 

When H’( +F) = 0, then A ,  = B, = 0 and 

7-2K,-6Kz+6,82+9K2sin2/?+(4+4K,+3Kz) - 
cos p 

Numerical values of the correction coefficient H are given in table 7. 
The correction coefficient allows us to compute the shape of the free surface when B 

is small. We may then, following procedures of the Lagrangian theory of domain 
perturbations (Joseph & Sturges 1975)) obtain the level lines of the stream function 
in the deformed domain by inverting the scaling transformation (3.4). I n  figures 7 
and 8 we show how different boundary conditions for H induce a different scaling 
(3.4) of the streamline patterns (figure 3) in the reference domain. 
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